Reductive Coupling of Aralkyl Halides by Vanadium(II)¹

T. A. Cooper

Contribution No. 275 from E. I. du Pont de Nemours and Company, Inc., Elastomer Chemicals Department, Wilmington, Delaware 19898. Received August 30, 1972

Abstract: The complex VCl₂(py)₄ was rapidly oxidized by several aralkyl halides, RX, to vanadium(III) and an almost quantitative yield of RR: $2V(II) + 2RX \rightarrow RR + 2V(III) + 2X^{-}$. No products of the type RH were observed. Only activated halo compounds, e.g., benzyl bromide, were reduced; the reactivity order was RBr > RCl and $CHal_3 > CHal_2 > CHal$. Nonactivated halo compounds, e.g., vinyl halides and alkyl monohalides, were inert. The reactions were first order in oxidant and reductant and were accelerated by electron-withdrawing substituents. For the reduction of benzotrichloride in THF, $\Delta H^{\pm} = 17.3$ kcal mol⁻¹ and $\Delta S^{\pm} = -3.5$ eu. Initial attack on the V(II) complex by the aralkyl halide via an outer-sphere mechanism may form a radical which rapidly reacts with a further V(II) yielding an aralkyl vanadium(III) intermediate. This can be rapidly oxidized by another RX to yield the coupled product exclusively. The coupled products are not formed by dimerization of free radicals. Alternatively, an initial inner-sphere attack may produce an aralkyl vanadium(IV) species which is rapidly reduced to the aralkyl vanadium(III) intermediate by a further vanadium(II). Dicyclopentadienylvanadium, which reacted more rapidly with aralkyl halides than did VCl₂(py)₄, also yielded coupled products and no RH. Both vanadium compounds reduced vic-dihalides to the corresponding olefins.

Alkyl and aralkyl halides, RX, are reduced by many low-valent transition metal compounds, often via organometallic intermediates. Mixtures of RH and the coupled compound R-R are commonly formed in proportions depending on the specific halide, metal, ligands, and conditions used; vicinal dihalides are generally dehalogenated to the olefin.

Such reductions by vanadium(II) have been neglected except for reports that dicyclopentadienylvanadium (Cp₂V) reduces benzyl chloride to bibenzyl² and carbon tetrachloride to tetrachloroethylene via hexachloroethane³ and that aqueous vanadous salts reduce benzyl chloride to toluene and bibenzyl.⁴ Because V(II) differs from Cr(II), the reactions of which have been studied in great detail, in being a weaker reductant, being an electron donor from a t_{2g} rather than an e_g orbital, and being substitutionally inert,⁵ we have studied the reactions of organic halides with V(II).

Experimental Section

Materials. $VCl_2(py)_4$ was prepared from VCl_4 by Quarles' method.6 Vanadous chloride in 90% THF-0.5 F HCl was prepared by reduction of VCl_3 with zinc amalgam. Higher concentrations of THF gave only messy black precipitates. Cp_2V^7 was vacuum sublimed. Tetrahydrofuran (THF) was distilled over sodium and redistilled from lithium aluminum hydride under nitrogen before use. 3-Chlorobenzotrichloride (Aldrich) and 3,4dichlorobenzotrichloride (K and K) were filtered through neutral alumina and fractionated under reduced pressure of nitrogen (bp 51 and 74°, respectively, at 0.15 mm). 4-Chlorobenzotrichloride (Aldrich) was purified as described previously for benzotrichloride.8 Benzyl bromide (Eastman) was fractionated under nitrogen (bp 133° at 100 mm) and used immediately. 1,3- and 1,4-bis(trichloromethyl)benzenes (Aldrich) were recrystallized from hexane, mp 39

(4) L. H. Slaugh and J. H. Raley, Tetrahedron, 20, 1005 (1964).

(5) (a) A. G. Sykes, Advan. Inorg. Chem. Radiochem., 10, 153 (1967); (b) K. Kustin, Progr. Inorg. Chem., 13, 107 (1969).

(6) R. W. Quarles, Jr., private communication.

(7) J. J. Eisch and R. B. King, "Organometallic Syntheses," Vol. 1, Academic Press, New York, N. Y., 1965, p 64.

(8) T. A. Cooper and T. Takeshita, J. Org. Chem., 36, 3517 (1971).

and 114° , respectively. Other preparations were described previously.⁸ The compounds were kept anaerobic and anhydrous and their purities checked by vpc and nmr.

Measurements. Because VCl₂(py)₄ is rapidly oxidized to vanadium(IV) by oxygen and peroxides, all operations were performed under oxygen- and peroxide-free conditions.

Vanadium valence states were determined polarographically with a dropping mercury electrode.9 To avoid interference from organic compounds, vanadium solutions were hydrolyzed with 0.2 N sulfuric acid and extracted twice with hexane, and the aqueous phase was polarographed immediately.

Kinetic Measurements. Upon oxidation by organic halides, the red VCl₂(py)₄ solution in THF forms a pale pink, or in the presence of water pale yellow, V(III) solution (which is rapidly oxidized by air to pale green V(IV)). The reagents were mixed in a thermostated ($\pm 0.05^{\circ}$) cell block, and reaction followed at 480 nm. Reactions in benzene, methylene dichloride, and benzonitrile produced insufficient spectral changes for such measurements.

The formation of V³⁺ from VCl₂ in 90% THF-0.5 F HCl was followed at 428 nm.

Product yields were measured by gas chromatography as described previously.8 Controls containing no VCl₂(py)₄ were analyzed where necessary. Products were generally identified by comparison with authentic samples and by mass spectroscopy. Products were isolated from some larger scale reactions by extracting twice with equal parts of water and hexane and evaporating the dried hexane layer.

Results

VCl₂(py)₄ is oxidized to V(III) by activated organic halides (Table I). It is not oxidized by alkyl mono-

Table I.	Reactivities	of	Organic	Halides	toward	VCl ₂ (py) ₄	
----------	--------------	----	---------	---------	--------	------------------------------------	--

Compound	Reactivity ^a	Compound	Reactivity ^a
CBr ₄	>200	C ₆ F ₅ CH ₂ Br	2
Ph₂CBr	200	PhCHBr ₂	2
Ph ₂ CHCl	40	CCl ₄	1
PhCCl₃	40	2-BrC₀H₄N	0.1
PhCOCl	40		
$CCl_2 = CClCCl_3$	5	PhCH₂Br	0.1
$CH_2 = CHCH_2I$	2	PhCH₂Cl	0.05
BrCCl ₃	2	$CH_2 = CClCH_2Cl$	0.02

^a Approximate reactivities relative to CCl₄ in THF at 20°.

⁽¹⁾ Presented in part at the 1st IUPAC Conference on Physical Organic Chemistry, Crans-sur-Sierre, Switzerland, Sept 1972. (2) H. J. de Liefde Meijer, M. J. Janssen, and G. J. M. van der Kerk,

Recl. Trav. Chim. Pays-Bas, 80, 831 (1961). (3) G. A. Razuvaev, V. N. Latyeva, A. N. Lineva, and N. N. Spiri-donova, J. Gen. Chem. USSR, 41, 2752 (1971).

⁽⁹⁾ I. M. Kolthoff and J. J. Lingane, "Polarography," Vol. 2, 2nd ed, Interscience, New York, N. Y., 1952.

Table II. Products from Reductions of Aralkyl Halides by VCl₂(py)₄

Oxidant	Solvent	Products	Remarks ^a
PhCH ₂ Br	THF	(PhCH ₂) ₂	See Table III; no PhMe
PhCH₂Cl	THF	$(PhCH_2)_2$	No PhMe
Ph ₂ CHCl	THF, C6H6, CH2Cl2, or PhCN	$(Ph_2CH)_{2^b}$	91 % yield isolated; no Ph_2CH_2
PhCHBr ₂	THF	$(PhCHBr)_{2^{c}} + trans-$ PhCH=CHPh (3:1)	No <i>cis</i> -PhCH=CHPh; no PhCH ₂ Br
$PhCCl_3^d$	THF, C ₆ H ₆	(PhCCl ₂) ₂	See Table IV; 80% yield isolated; traces of PhCCl==CClPh; no PhCHCl ₂ , PhCH ₂ Cl, or PhCH ₃
3-ClC ₆ H ₄ CCl ₃	THF	$(3-ClC_{a}H_{4}CCl_{2})_{2}^{b}$	No substituted derivatives of
4-CIC H(CC)	THE	(4-CIC H, CCl ₂) ^b	PhCHCl, or PhCHCl, or PhCH
3 4-ChC H.CCh	THE	e	
m-CCl ₃ C ₆ H ₄ CCl ₃	THF	Brown polymer	Infusible up to 300°; mol wt 900–6000°
(PhCCl ₂) ₂	THF	PhCCl=CClPh cis:trans (4:1)	High yield; no PhC≡CPh
C_2Cl_6	THF	$CCl_2 = CCl_2$	Yield erratic, 26–98%

^a Yields based on initial [VCl₂(py)₄]/2. In all cases VCl₂(py)₄ was oxidized to V(III) only. ^b Too involatile to be confirmed by mass spectrometry. ^e Forms no molecular ion at mass no. 340 but instead gives mass spectrum of trans-stilbene due to debromination in the spectrometer. ^d Reduction by V²⁺ in 90% THF-0.5 F HCl also gave high yields of (PhCCl₂)₂ and no benzal chloride, etc. Only V(III) was formed. • No product eluted from vpc, consistent with the formation of 3,3',4,4'-tetrachlorotolane tetrachloride.

halides, vinyl halides, aryl halides, or organic fluorides. Reactivities generally follow the order

$$-CHal_3 \gg -CHal_2 \gg -CHal and CBr > CCl$$

Product Analysis. The reduction products are summarized in Tables II-IV. Except with the vicinal

Table III. Yields of Bibenzyl from the Reduction of Benzyl Bromide by VCl₂(py)₄ (THF Solvent, Temperature ca. 23°)

Initial 10³[VCl₂(py)₄], M	Initial 10[PhCH₂Br], <i>M</i>	10 ³ [(PhCH ₂) ₂], <i>M</i> , produced	% yield of (PhCH ₂) ₂ (±2%) ^a
9.8	4.93	3.9	80
10.0	3.82	3.9	78
10.2	2.65	4.2	82
10.3	1.66	4.5	88
10.4	0.83	4.3	83
10.5	0.35	4.5	86

^a Based on initial [VCl₂(py)₄]/2. Error limits are standard error of mean coupled product measured.

Table IV. Yields of Tolane Tetrachloride from the Reduction of Benzotrichloride by VCl₂(py)₄ (THF Solvent, Initial $[VCl_2(py)_4] = 9.9 \times 10^{-3} M$, Temperature ca. 20°)

Initial 10³[PhCCl ₃], M	10 ³ [PhCCl ₃], <i>M</i> consumed ^b	10 ³ [(PhCCl ₂) ₂], <i>M</i> , produced	$\% yield^{a,c}$ (PhCCl ₂) ₂ (±3%)
189		4.64	93
122		4.42	89
70	11.3 ± 2.0	4.08	83
46	12.3 ± 1.5	3.69	75
28.2	10.7 ± 0.9	3.37	68
14.1	9.8 ± 0.4	2.99	60

^a As for Table III. ^b Error limits are standard error of differences of means. ^e Extrapolated yield at infinite benzotrichloride concentration is $5.0 \times 10^{-3} M$, or 100%.

dihalides, which gave olefins inert to further reduction, only coupled products or their reduction products were formed; in no case were RH-type products detected.

The solvent had little effect on the products. sym-Tetraphenylethane (91%) was isolated from the reduction of benzhydryl chloride in THF; recrystallization from benzene-ethanol gave white crystals, mp 218°, mmp 222° (lit. ¹⁰ 215°).

Anal. Calcd for $C_{14}H_{12}$: C, 93.4; H, 6.6. Found: C, 93.4; H, 6.6.

Similarly, benzotrichloride in THF yielded 80% of tolane tetrachloride, recrystallized from benzeneethanol as white crystals, mp 162°, mmp 164° (lit.^{8,10} 162°).

Anal. Calcd for C₁₄H₁₀Cl₄: C, 52.5; H, 3.2; Cl, 44.3. Found: C, 52.7; H, 3.2; Cl, 44.4.

Reaction Kinetics. Benzyl halides oxidized VCl₂-(py)₄ too slowly for convenient kinetic measurement (Table I).

The reduction of benzotrichloride in THF followed eq 1 over at least 2–3 half-lives (correlation coefficients

$$-d[VCl_{2}(py)_{4}]/dt = k_{2}[VCl_{2}(py)_{4}][PhCCl_{3}]$$
(1)

>0.9994) (Table V). ΔH^{\pm} and ΔS^{\pm} are 17.3 kcal mol^{-1} and -3.5 eu, respectively (Table VI). The reaction was much slower in benzene and benzonitrile.

Reduction of benzotrichloride by VCl₂ in 90% THF-0.5 F HCl was first order in V^{2+} over about 3 half-lives. The dependence on oxidant was not determined, but if first order would imply $k_2 \simeq 7 \times 10^{-4} M^{-1} \text{ sec}^{-1}$ at 25°, 400 times slower than reduction by $VCl_2(py)_4$.

Ring-substituted benzotrichlorides also followed eq 1. The ln k_2 values correlate somewhat poorly (correlation coefficient 0.882) with the Hammett σ values¹¹ (Table VII), ρ being 1.2 (standard error 0.3). Hydroxyl-substituents formed a yellow complex with the V(III) produced which interfered with rate measurements; nitro groups instantaneously oxidize VCl₂(py)₄ to V(IV) and V(V).

vic-Dichlorides. The reduction of tolane tetrachloride was extremely slow; after an initial short burst

Cooper | Reductive Coupling of Aralkyl Halides by V(II)

⁽¹⁰⁾ R. C. Weast, Ed., "Handbook of Chemistry and Physics," 50th

ed, Chemical Rubber Publishing Co., Cleveland, Ohio, 1969. (11) P. R. Wells, "Linear Free Energy Relationships," Academic Press, London, 1968.

Table V. Kinetics of Reduction of Benzotrichloride by $VCl_2(py)_4$ (Temperature 20.1°, THF Solvent)

10 ² [PhCCl ₃], M	$10^{3}k'$, sec ⁻¹ ^a	$10k_2, M^{-1} \sec^{-1}{b}$		
a. Initial $[VCl_2(py)_4] = 4.9 \times 10^{-4} M$				
20.2	25.6	1.27		
16.2	21.2	1.31		
10.1	13.1	1.30		
4.05	5.45	1.34		
2.02	2.71	1.34		
1.01	1. 5 0	1.48		
0.81	1.20	1.48		
0.40	0.52	1.30		
b. Initial	$[VCl_2(py)_4] = 1.45$	× 10 ⁻ 4 M		
12.1	17.4	1.44		
4.05	5.80	1.43		
1.01	1.54	1.52		

^a Calculated as $k' = d \ln [VCl_2(py)_4]/dt$. ^b $k_2 = k'/[PhCCl_3]$. The regression line through the origin gives $k_2 = 0.131 M^{-1} \text{ sec}^{-1}$ (standard deviation 0.002, correlation coefficient 0.9989). k_2 does not differ significantly (at the 95% confidence level) between the two initial V(II) concentrations used.

Table VI.Activation Parameters for the Oxidation ofVCl2(py)4 by Benzotrichloride (THF Solvent)

<i>T</i> , ℃		$\frac{10k_2, M^{-1}}{\sec^{-1}a}$	<i>T</i> , ℃	$10k_2, M^{-1}$ sec ^{-1 a}
	a.	Initial [VCl ₂ (p)	$()_4] = 1.89 \times 10^{-1}$	-4 M
59.6		47.1	44.8	19.2
55.7		32.0	39.9	8.75
49.2		24.7		
	b.	Initial [VCl2(py	$()_{4}] = 3.78 \times 10^{4}$	-4 M
35.0		5.61	15.1	0.796
30.0		3.39	10.0	0.440
25.0		2.14	5.0	0.255
20.1		1.28		

^a Activation parameters calculated from the regression line of ln k_2 upon $10^3/T_{abs}$ (°K⁻¹) are $\Delta H^{\pm} = 17.3$ kcal mol⁻¹, $S_{\Delta}H^{\pm} = 0.38$; $\Delta S^{\pm} = -3.5$ eu at 30.5°, $S_{\Delta}S^{\pm} = 1.23$; $\Delta G^{\pm} = 18.4$ kcal mol⁻¹ at 30.5°, $S_{\Delta}G^{\pm} = 0.53$; correlation coefficient = 0.9978.

Table VII. Rates of Oxidation of $VCl_2(py)_4$ by Substituted Benzotrichlorides (Temperature 20.0°, THF Solvent)^{*a*}

Substituent	$10k_2, M^{-1}$ sec ^{-1 b}	Std error of 10k ₂	$ \begin{array}{c} 10k_2 \text{ per} \\ -\text{CCl}_3 \\ \text{group,} \\ M^{-1} \sec^{-1} \end{array} $	Hammett σ value
Н	1.31	0.02	1.31	0
3-Cl	3.0	0.049	3.0	0.37
	(3.0)	(0.026)		
3-CCl ₃	6.4	0.080	3.2	0.40
	(6.3)	(0.087)		
4-Cl	3.9	0.022	3.9	0.24
4-CCl₃	9.4	0.18	4.7	0.46
	(9.4)	(0.096)		
3,4-Cl ₂	7.6	0.08	7.6	0.53

 a Values in parentheses include those measurements made in systems containing water. b First-order dependence on V(II) (correlation coefficients >0.999) and halide (correlation coefficients 0.9988 to 0.9999) over at least 2–3 half-lives.

it approximately followed eq 1 over 2 half-lives (Table VIII); k_2 is about $\frac{1}{215}$ of that for benzotrichloride.

The faster reduction of hexachloroethane also approximately followed eq 1 over 2 half-lives (Table VIII). This reduction is slower than that of benzotrichloride because of a less favorable ΔS^{\pm} (significant at the 2.5% level).

Effect of Proton Acids and Free Radical Traps.

Table VIII.	Rate of	Reduction	of vic-Diha	lides by	VCl ₂ (py) ₄
Initial [VCl ₂	$(py)_4] =$	3.05×10	-4 M, THF	Solvent))

Temp, °C	10²[dihalide], M	$10^{4}k'$, sec ⁻¹	$\frac{10^{3}k_{2}, M^{-1}}{\sec^{-1 a}}$
	(a) Tolane	Tetrachloride	
44.6	1.12	0.98	8.8
44.6	4.46	4.0	9.0
44.6	22.3	20.1	9.0
			Mean 8.9
	(b) Hexac	hloroethane	
45.0	13.7	143	10.4
45.0	7.2	82	11.3
35.0	13.7	81	5.9
35.0	9.7	60	6.3
35.0	7.2	46	6.3
25.0	7.2	23.4	3.2
16.0	16.1	14.5	0.90
16.0	9.7	7.7	0.80
6.0	9.7	2.56	0.265

^a $\Delta H^{\pm} = 16.4$ kcal mol⁻¹, $S_{\Delta H^{\pm}} = 0.094$; $\Delta S^{\pm} = -11$ eu at 25.5°, $S_{S\Delta^{\pm}} = 3.1$; $\Delta G^{\pm} = 19.7$ kcal mol⁻¹ at 25.5°, $S_{\Delta G^{\pm}} = 1.3$; correlation coefficient = 0.989.

No intermediates were detected spectrally in the oxidations of $VCl_2(py)_4$. No transient peak developed and as the $VCl_2(py)_4$ peak (480 nm in THF, 535 nm in benzene) disappeared without shifting only that for V(III) appeared.

Proton acids and free-radical traps were added to try to trap organo vanadium or free-radical intermediates, respectively. Concentrations of water up to five times the initial $VCl_2(py)_4$ had little effect on the $VCl_2(py)_4$ spectrum, reaction rate (Table VII), rate law, or reaction products. High yields of tolane tetrachloride and no traces of benzal chloride, benzyl chloride, or toluene were produced. (Aqueous vanadous chloride also reduced benzotrichloride to tolane tetrachloride.) However, the final color changed from pale pink to pale yellow because of complexing of the substitutionally labile V(III).⁵ Likewise, excess phenol caused no pronounced alteration in reaction rate or yield of tolane tetrachloride, and no benzal chloride, benzyl chloride, or toluene was produced in its presence.

Addition of excess of the free-radical trap cyclo-1,4hexadiene also had no effect on the reaction products.

Reduction by Cp₂V. Cp₂V in ether reduces benzyl chloride to bibenzyl.² In THF or hexane it reacts with aralkyl halides faster than $VCl_2(py)_4$ does, but also yields only the coupled products, or compounds derived therefrom (Table IX). No RH-type products were observed.

Table IX.Reactivity of Vanadocene withOrganic Halides in THF

0	
Oxidant	Products ^{a,b}
PhCCl₃	PhCCl ₂ CCl ₂ Ph + ca. 20% cis- and trans- PhCCl=CClPh; no PhCHCl ₂ , PhCH ₂ Cl, or PhCH ₃
Ph ₂ CHCl	$Ph_2CHCHPh_2$; no Ph_2CH_2
PhCHBr ₂	PhCHBrCHBrPh + <i>trans</i> -PhCH=CHPh + <i>cis</i> -PhCH=CHPh (2.5:8:1)
PhCH₂Br	$PhCH_2CH_2Ph; no PhCH_3$

^a Nonactivated halides, *e.g.*, alkyl monohalides, aryl halides, and benzotrifluoride, do not react. ^b Cp₂V forms a blue tetrahydrofuran solution. These reactions show marked color changes and sometimes deposit green crystals. Reactions in hexane are similar but form messy precipitates.

Table X. Activation Parameters for the Reduction of Organic Halides by Transition Metal Compounds

			ΔH^{\pm} , kcal		
Halide	Reductant	Medium	mol ⁻¹	ΔS^{\pm} , eu	Ref
PhCH ₂ Cl	Cr ²⁺ aq	71.5% EtOH	14.0	-14.3	13
trans-1,2-Dibromocyclohexane	Cr ²⁺ aq	88% DMF	11.2	-20.8	17
cis-1,2-Dibromocyclohexane	Cr ²⁺ aq	88% DMF	13.2	-24.2	17
c-C ₆ H ₁₁ Br	Cr ²⁺ aq	88% DMF	14.4	-27.2	17
p-BrCH ₂ C ₆ H ₄ COO ⁻	Co(CN) ₅ ³⁻	NaClO₄ aq	3.8	- 36	27
(-OOCCHBr) ₂ meso-	Co(CN)5 ³⁻	NaClO₄ aq	5.0	-33	27
dl-		NaClO₄ aq	6.2	-34	27
PhCH₂Br	Co ^{II} (DMH) ₂ PPh ₃	PhH	10.1	-32	22
PhCH₂Br	Co ^{II} (DMH) ₂ py	PhH	9.9	- 29	22
PhCH ₂ Cl	Bu ₃ P-cobaloxime(I)	MeOH–H₂O	7	-25	29
CH31	Ir(¹)CO[PPh ₃] ₂ Cl	C_6H_6	5.6	- 51	а
		DMF	16.4	-10	а
CHCl ₂ Br	$CoCp_2$	EtOH	13.6	-16.7	20
CCl4	$C_0C_{p_2}$	EtOH	12.8	-18.7	20
(PhCHBr) ₂ meso-	SnCl ₂	DMF	15.5	- 28	Ь
dl-			19.3	-21	Ь

^a P. B. Chock and J. Halpern, J. Amer. Chem. Soc., 88, 3511 (1966). ^b W. K. Kwok and S. I. Miller, J. Amer. Chem. Soc., 92, 4599 (1970).

Discussion

The oxidations of $VCl_2(py)_4$ by aralkyl halides all selectively form coupled compounds, R-R, with the complete absence of RH-type products (Table II). Although coupled products are frequently formed from reduction of organic halides by transition metal compounds, they are often obtained together with RH-type products. Thus Cr(II) reduces benzyl halides to bibenzyl and toluene in proportions depending on the conditions,^{4,12,13} benzyl chloride to toluene in DMF-H₂O but to stilbene in EtOH-H₂O,¹⁴ and benzotrichloride to toluene only by a route not involving benzal or benzyl chlorides.¹⁴ Fe²⁺ will not reduce benzyl chloride but generally couples polyhalogeno compounds, while Cu(I) reduces benzyl chloride to toluene and bibenzyl in proportions depending on added complexing agents.^{15,16} Tables III and IV indicate the stoichio metry

$$2P.X + 2V(II) \longrightarrow R-R + 2V(III) + 2X^{-}$$
(2)

The origin of the decrease in tolane tetrachloride yield with decreasing initial benzotrichloride concentration (Table IV) is not known, but secondary reduction of tolane tetrachloride is too slow to account for it (Table VIII). Reductions by Cp_2V follow the analogous stoichiometry.²

The dechlorination of *vic*-dihalides by $VCl_2(py)_4$ is similar to reaction with $Cr(II)^{17}$ and Cu(I).^{15,16}

 ΔS^{\pm} for the reduction of benzotrichloride (-3.5 eu) is much less unfavorable than those for similar reactions of other reductants which are generally either substitutionally labile or have a vacant coordination site (Table X) and is offset by a relatively high ΔH^{\pm} . Although activation entropies are not always very diagnostic, this suggests an outer-sphere reaction. An outersphere reaction may be favored here since unlike Cr(II),

- (13) J. K. Kochi and D. D. Davis, J. Amer. Chem. Soc., 86, 5264
 (1964).
 (14) C. E. Castro and W. C. Kray, J. Amer. Chem. Soc., 88, 4447
- (1966).
 (15) K. Onuma, J. Yamashita, and H. Hashimoto, Bull. Chem. Soc.
- Jap., 43, 836 (1970). (16) T. Shirafuji, Y. Yamamoto, and H. Nozaki, Bull. Chem. Soc.
- Jap., 44, 1994 (1971). (17) D. M. Singleton and J. K. Kochi, J. Amer. Chem. Soc., 89, 6547
- (1967).

which probably reacts by an inner-sphere process, ^{13, 18} V(II) is substitutionally inert and direct electron transfer from a V(II) t_{2g} orbital to an antibonding oxidant orbital could occur

$$\mathbf{R}\mathbf{X} + \mathbf{V}(\mathbf{II}) \longrightarrow \mathbf{R} \cdot + \mathbf{V}(\mathbf{III}) + \mathbf{X}^{-} \tag{3}$$

This outer-sphere route was proposed for the reduction of nitrobenzyl halides by bis(*N*-methyl-*N'*-salicylidene)ethylenediaminocobalt(II)¹⁹ and of benzyl chloride by cobaltocene.²⁰ It is consistent with the marked acceleration by electron-withdrawing substituents (Table VII) and the reactivity order CHal₃ > CHal₂ > CHal. Similar acceleration by electron-withdrawing substiuents is found when benzyl halides are reduced polarographically ($\rho = 1.45$),²¹ by Co(DMH)PPh₃ ($\rho =$ 1.48),²² by Co(CN)₅³⁻,²³ and by cobaltocene.²⁰ In contrast, reduction by Cr(II) is little affected by substituents.¹³

In added support for an outer-sphere mechanism, the reactivity ratio $k_{\rm Br}/k_{\rm Cl}$ for reductions by VCl₂(py)₄ is about 2. This is similar to values of 2–6 for outer-sphere reductions of nitrobenzyl halides by Co(II)^{13,24} and 2–3 for outer-sphere reduction of Ru(NH₃)₅Hal²⁺ and Co(NH₃)₅Hal²⁺ by V^{2+, 25, 26} In contrast, $k_{\rm Br}/k_{\rm Cl}$ is about 10² for Cr(II)^{13,18} and 10³–10⁴ for five-coordinate Co(II)^{22–24, 27, 28} for inner-sphere reductions of organic halides.

An inner-sphere mechanism in which the aralkyl halide complexes the $VCl_2(py)_4$, followed by halogen transfer, cannot be ruled out, however. As these reactions are relatively slow, the substitution of $VCl_2(py)_4$

- (18) J. K. Kochi and J. W. Powers, J. Amer. Chem. Soc., 92, 137 (1970).
- (19) L. G. Marzilli, P. A. Marzilli, and J. Halpern, J. Amer. Chem. Soc., 92, 5752 (1970).
 (20) G. Herberich and J. Schwarzer, J. Organometal. Chem., 34, C43
- (1972). (21) A. Streitwieser and C. Perrin, J. Amer. Chem. Soc., 86, 4938 (1964).
- (22) J. Halpern and P. F. Phelan, J. Amer. Chem. Soc., 94, 1881 (1972).
- (23) P. B. Chock and J. Halpern, J. Amer. Chem. Soc., 91, 582 (1969).
- (24) J. Halpern, Accounts Chem. Res., 3, 386 (1970).
- (25) H. Diebler and H. Taube, Inorg. Chem., 4, 1029 (1965).
 (26) J. P. Candlin, J. Halpern, and D. L. Trimm, J. Amer. Chem. Soc.,
- (27) J. F. Caldini, J. Halperi, and D. L. Hillini, J. Amer. Chem. Soc., 86, 1019 (1964).
- (27) J. Halpern and J. P. Maher, J. Amer. Chem. Soc., 87, 5361 (1965).
- (28) L. G. Marzilli, P. A. Marzilli, and J. Halpern, J. Amer. Chem. Soc., 93, 1374 (1971).

⁽¹²⁾ J. K. Kochi and D. Buchanan, J. Amer. Chem. Soc., 87, 853 (1965).

may be fast enough. Halogen bridged intermediates have been proposed in reductions of aralkyl halides by Fe(II),¹⁵ Cu(I),¹⁵ Cr(II),^{12,13} and five-coordinate Co(II),²⁴ and are more likely for a d³ ion than direct SN2 attack on the α carbon.^{24,29} As V(III) complexes are substitutionally labile, one cannot distinguish between an inner- or outer-sphere route from the fate of the halide liberated.

However step 3 occurs, it probably forms a radical which reacts rapidly with another V(II) to form an organovanadium intermediate.

$$\mathbf{R} \cdot + \mathbf{V}(\mathbf{II}) \longrightarrow [\mathbf{R} - \mathbf{V}(\mathbf{III})] \tag{4}$$

Thus, radicals are formed in reductions of halo compounds by Cr(II),^{14,18} $Co(CN)_5^{3-}$,²⁴ and Cu(I).³⁰ Our failure to trap radicals with phenol or cyclo-1,4-hexadiene is not evidence against radical formation, since they may be stabilized by association with the V(III) species, and step 4 may be very rapid since V(II) is paramagnetic d³. Reactions of alkyl radicals with $Cr^{II}en^{18}$ and $Cr(H_2O)_6^{2+31}$ have rate constants of 3 × 10^7 to 3 × $10^8 M^{-1} sec^{-1}$.

Formation of coupled products by radical dimerization is unlikely. A stationary-state calculation, taking rate constants of $4 \times 10^8 M^{-1} \sec^{-1}$ for benzyl radical dimerization³² and $10^7 M^{-1} \sec^{-1}$ for step 4,^{18,31} indicates that dimerization is 10^{5} - 10^{6} times slower than step 4. The rapidity of step 4 likewise explains the complete absence of RH-type products. THF is probably not very active toward radicals; thus the rate constant for methyl radical attack on dioxane is only $7 \times 10^3 M^{-1} \sec^{-1}$ at 110° .³³ The hydrogen in alkanes produced by Cr¹¹en reduction of organic halides arises exclusively from protolysis of an intermediate alkyl chromium complex and not by hydrogen abstraction from the DMF solvent.¹⁸

Routes not involving radicals are possible if there is oxidative addition of the aralkyl halide to the vanadium²⁴

$$RX + VL_6 \longrightarrow RVL_4X + 2L \tag{5}$$

Since V(II) is (t_{2g}) ,³ overlap with the R group may then favor its capture rather than its expulsion as a radical. The organovanadium(IV) intermediate can then be rapidly reduced

$$RVL_4X + V(II) \longrightarrow [R-V(III)] + V(III)$$
 (6)

Whichever path be followed, an organo-vanadium-(III) intermediate is involved. Unlike the cases of reductions by $Cr(II)^{12, 18, 34}$ and $Co(II),^{22, 24}$ this was not detected spectrally or kinetically or trapped by proton acids. However, acid cleavage to alkanes is fairly slow^{12, 35} so that this is not evidence against organo vanadium intermediates. The resemblance of VCl₂-(py)₄ reductions to those by Cp₂V—which involve a Cp₂VR intermediate—supports the formation of such an intermediate.

The specific formation of coupled products probably results from

$$[R-V(III)] + RX \longrightarrow R_2 + V(III) + X^-$$
(7)

Thus in Cr(II) reduction of benzyl halides the benzyl chromium(III) intermediate reacts with benzyl halide to form bibenzyl while reaction between two benzyl-chromium ions is much slower.¹² As V(III) is substitution labile,⁵ reaction 7 may involve rapid addition to form $[R_2V^{v}]$ which then rapidly decomposes to R_2 and V(III). Benzylchromium(III) and alkylcobalt(III) complexes are substitution inert, so their reactions with alkyl halide are much slower, allowing them to be detected.

Compounds containing vanadium-carbon σ bonds are unusual. Only a few are known in valencies (II),³⁶ (IV),³⁷⁻³⁹ and (V).³⁸ Apart from a few Cp₂VR^{38,40} compounds, no V(III) compounds containing a vanadium-carbon σ bond are known. The likely formation of σ -bonded aralkyl vanadium(III) intermediates in the reduction of aralkyl halides by VCl₂(py)₄ is of considerable interest, especially when it is considered that industrially important processes using vanadium catalysts, *e.g.*, the Ziegler–Natta polymerization of olefins, probably involve σ -bonded alkylated V(III) intermediates.

Acknowledgments. I thank the late Professor R. S. Nyholm and Professors J. K. Kochi and A. Streitwieser for helpful discussions, Dr. T. L. Pugh for the mass spectra, and Mr. L. L. Burchfield for skillful technical assistance.

(34) C. T. Loo, L.-Y. Goh, and S. H. Goh, J. Chem. Soc., Dalton Trans., 585 (1972).

(35) G. W. Parshall and J. J. Mrowca, Advan. Organometal. Chem., 7, 157 (1968).

(36) E. Kurras, Angew. Chem., 72, 635 (1970).

(37) (a) S. Ibekwe and J. Myatt, J. Organometal. Chem., 31, C65 (1971); (b) G. A. Razuvaev, V. N. Latyeva, and A. N. Lineva, J. Gen. Chem. USSR, 41, 1560 (1971); (c) F. Huq, W. Mowat, A. Shortland, A. C. Skapski, and G. Wilkinson, Chem. Commun., 1079 (1971); (d) G. A. Razuvaev, V. N. Latyaeva, A. N. Lineva, and N. N. Spiridinova, J. Organometal. Chem., 46, C13 (1972).

(38) J. H. Teuben and H. J. de Liefde Meijer, J. Organometal. Chem., 17, 87 (1969).

(39) W. Mowat, A. Shortland, G. Yagupsky, N. J. Hill, M. Yagupsky, and G. Wilkinson, J. Chem. Soc., Dalton Trans., 533 (1972).

(40) F. W. Siegert and H. J. de Liefde Meijer, Recl. Trav. Chim. Pays-Bas, 89, 764 (1970); J. Organometal. Chem., 15, 131 (1968).

⁽²⁹⁾ G. N. Schrauzer and E. Deutsch, J. Amer. Chem. Soc., 91, 3341 (1969).

⁽³⁰⁾ H. Doorenboos, Polym. Prepr., Amer. Chem. Soc., Div. Polym. Chem., 10, 1351 (1969).

⁽³¹⁾ H. Cohen and D. Meyerstein, J. Chem. Soc., Chem. Commun., 320 (1972).

⁽³²⁾ R. D. Burkhard, J. Amer. Chem. Soc., 90, 273 (1968).

⁽³³⁾ W. A. Pryor, D. L. Fuller, and J. P. Stanley, J. Amer. Chem. Soc., 94, 1632 (1972).